2,669 research outputs found

    Computational Design of Flexible Electride with Nontrivial Band Topology

    Full text link
    Electrides, with their excess electrons distributed in crystal cavities playing the role of anions, exhibit a variety of unique electronic and magnetic properties. In this work, we employ the first-principles crystal structure prediction to identify a new prototype of A3B electride in which both interlayer spacings and intralayer vacancies provide channels to accommodate the excess electrons in the crystal. This A3B type of structure is calculated to be thermodynamically stable for two alkaline metals oxides (Rb3O and K3O). Remarkably, the unique feature of multiple types of cavities makes the spatial arrangement of anionic electrons highly flexible via elastic strain engineering and chemical substitution, in contrast to the previously reported electrides characterized by a single topology of interstitial electrons. More importantly, our first-principles calculations reveal that Rb3O is a topological Dirac nodal line semimetal, which is induced by the band inversion at the general electronic k momentums in the Brillouin zone associated with the intersitial electric charges. The discovery of flexible electride in combining with topological electronic properties opens an avenue for electride design and shows great promises in electronic device applications

    Watermarking Vision-Language Pre-trained Models for Multi-modal Embedding as a Service

    Full text link
    Recent advances in vision-language pre-trained models (VLPs) have significantly increased visual understanding and cross-modal analysis capabilities. Companies have emerged to provide multi-modal Embedding as a Service (EaaS) based on VLPs (e.g., CLIP-based VLPs), which cost a large amount of training data and resources for high-performance service. However, existing studies indicate that EaaS is vulnerable to model extraction attacks that induce great loss for the owners of VLPs. Protecting the intellectual property and commercial ownership of VLPs is increasingly crucial yet challenging. A major solution of watermarking model for EaaS implants a backdoor in the model by inserting verifiable trigger embeddings into texts, but it is only applicable for large language models and is unrealistic due to data and model privacy. In this paper, we propose a safe and robust backdoor-based embedding watermarking method for VLPs called VLPMarker. VLPMarker utilizes embedding orthogonal transformation to effectively inject triggers into the VLPs without interfering with the model parameters, which achieves high-quality copyright verification and minimal impact on model performance. To enhance the watermark robustness, we further propose a collaborative copyright verification strategy based on both backdoor trigger and embedding distribution, enhancing resilience against various attacks. We increase the watermark practicality via an out-of-distribution trigger selection approach, removing access to the model training data and thus making it possible for many real-world scenarios. Our extensive experiments on various datasets indicate that the proposed watermarking approach is effective and safe for verifying the copyright of VLPs for multi-modal EaaS and robust against model extraction attacks. Our code is available at https://github.com/Pter61/vlpmarker

    Polymorph of 4-(carbazol-9-yl)benzo­nitrile

    Get PDF
    The asymmetric unit of the title compound, C19H12N2, contains two independent mol­ecules with a similar structure. In the two mol­ecules, the dihedral angles between the carbazole ring system and the benzene ring are 47.9 (5) and 45.4 (4)°, similar to the value of 47.89 (6)° found in the previously reported structure [Saha & Samanta (1999 ▶). Acta Cryst. C55, 1299–1300]. In the crystal, there is a weak C—H⋯N hydrogen bond between the two independent mol­ecules

    Coupled effects of moisture transport pathway and convection on stable isotopes in precipitation across the East Asian Monsoon Region: implications for paleoclimate reconstruction

    Get PDF
    This study investigated the variations in stable oxygen isotopes in daily precipitation (δ18Op) collected between 2010 and 2013 at four sites across the East Asian monsoon region to address the controversy whether local meteorological factors, moisture transport pathway, or convection dominates the δ18Op changes. We found that the δ18Op time series exhibit opposite seasonal patterns between the southern and northern sites; however, relatively low δ18Op values occur at each site during summer. The opposite seasonal patterns are closely related to the proportional change in the contributions from oceanic (>52% in the south) and continental (>85% in the north) moisture sources. Moisture transport distances also influence the seasonal δ18Op fluctuations. In the south, the moisture transported over short distances from the middle of the western Pacific Ocean results in relatively high δ18Op values during the premonsoon season. In contrast, long-distance transport of moisture from the Indian and equatorial Pacific Oceans during the monsoon season results in relatively low δ18Op values. In the north, relatively low δ18Op values during the monsoon season can be attributed to an increase in relatively distant moisture originating from the middle of the western Pacific Ocean. Convection only plays a role in affecting δ18Op values in the south during the monsoon season. Our study suggests that moisture transport pathway (moisture sources and moisture transport distances) is a major factor that governs seasonal variations in δ18Op across the East Asian monsoon region, which has implications for the interpretation of paleoclimate records from this region

    Evaluation of a clinical pharmacist-led antimicrobial stewardship program in a neurosurgical intensive care unit: a pre-and post-intervention cohort study

    Get PDF
    Background: Antimicrobial resistance poses a significant challenge in neurosurgical intensive care units (ICU). The excessive use of broad-spectrum antibiotics is closely linked to the emergence and dissemination of drug-resistant bacteria within neurosurgical ICUs. This study assessed the effects of implementing a comprehensive Antimicrobial Stewardship (AMS) program in a neurosurgical ICU setting.Methods: From April 2022 to September 2022, an AMS program was implemented in the neurosurgical ICU. The program involved the regular presence of a pharmacist and an infectious disease physician who conducted prospective audits and provided feedback. To assess the impact of the AMS program, the outcome measures were compared between the AMS period and the 6 months before AMS implementation (pre-AMS period). The primary outcome was the use of antibacterial agents, including anti-pseudomonal beta-lactams (APBLs), polymyxin, and tigecycline. Additionally, the study evaluated the appropriateness of antimicrobial de-escalation and the susceptibility of Gram-negative bacilli to antimicrobial agents.Results: A total of 526 were included during the AMS period, while 487 patients were included in the pre-AMS period. The two groups had no significant differences in disease severity and mortality rates. During the AMS period, there was a notable decrease in the use of APBLs as empiric treatment (43.92% vs. 60.99%, p < 0.001). Multi-drug resistant organism (MDRO) infections decrease significantly during AMS period (11.03% vs. 18.48%, p < 0.001). The number of prescription adjustment increased significantly in all patients (0 item vs. 0 item, p < 0.001) and MDRO-positive patients (3 items vs. 2 items, p < 0.001) during the AMS period. Additionally, appropriate antimicrobial de-escalation for patients with MDRO showed improvement during the AMS period (39.66% vs. 20%, p = 0.001). Polymyxin utilization also decreased during the AMS period (15.52% vs. 31.11%, p = 0.034). Furthermore, the susceptibility of Gram-negative Bacilli isolates to APBLs was significantly higher during the AMS period.Conclusion: Implementing a comprehensive pharmacist-led AMS program led to a decrease in the use of antibacterial agents. This reduction in usage is significant because it can potentially delay the emergence of bacterial resistance

    Development of a Generic PCR Detection of 3-Acetyldeoxy-nivalenol-, 15-Acetyldeoxynivalenol- and Nivalenol-Chemotypes of Fusarium graminearum Clade

    Get PDF
    Fusarium graminearum clade pathogens cause Fusarium head blight (FHB) or scab of wheat and other small cereal grains, producing different kinds of trichothecene mycotoxins that are detrimental to human and domestic animals. Type B trichothecene mycotoxins such as deoxynivalenol, 3-acetyldeoxynivalenol (3-AcDON), 15-acetyldeoxynivalenol (15-AcDON) and nivalenol (NIV) are the principal Fusarium mycotoxins reported in China, as well as in other countries. A genomic polymerase chain reaction (PCR) to predict chemotypes was developed based on the structural gene sequences of Tri13 genes involved in trichothecene mycotoxin biosynthesis pathways. A single pair of primers derived from the Tri13 genes detected a 583 bp fragment from 15-AcDON-chemotypes, a 644 bp fragment from 3-AcDON-chemotypes and an 859 bp fragment from NIV-producing strains. Fusarium strains from China, Nepal, USA and Europe were identified by this method, revealing their mycotoxin chemotypes identical to that obtained by chemical analyses of HPLC or GC/MS and other PCR assays. The mycotoxin chemotype-specific fragments were amplified from a highly variable region located in Tri13 genes with three deletions for 15-AcDON-chemotypes, two deletions for 3-AcDON-chemotypes and no deletion for NIV-producers. This PCR assay generated a single amplicon and thus should be more reliable than other PCR-based assays that showed the absence or presence of a PCR fragment since these assays may generate false-negative results. The results with strains from several different countries as well as from different hosts further indicated that this method should be globally applicable. This is a rapid, reliable and cost-effective method for the identification of type B trichothecene mycotoxin chemotypes in Fusarium species and food safety controls

    Diverse and strain-specific metabolites patterns induced by fungal endophytes in grape cells of different varieties

    Get PDF
    The potential for endophytes to initiate changes in host secondary metabolism has been well documented. However, the mechanisms underlying endophyte-plant metabolic interactions are still poorly understood. Here, we analysed the effects of fungal endophytes on the metabolite profiles of grape cells from two cultivars: 'Cabernet Sauvignon' (CS) and 'Rose honey' (RH). Our results clearly showed that co-culture with endophytic fungi greatly modified the metabolic profiles in grape cells of both varieties. Treatments with endophytic fungal strains caused the numbers of detected metabolites to vary from 10 to 19 in CS cells and from 8 to 14 in RH cells. In addition, 5 metabolites were detected in all CS cell samples, while 4 metabolites were detected in all RH cell samples. Some endophytic fungal strains could even introduce novel metabolites into the co-cultured grape cells. The metabolic profiles of grape leaves shaped by endophytic fungi exhibited host selectivity and fungal strain specificity. In this assay, the fungal strains RH32 (Alternaria sp.) and MDR36 (Colletotrichum sp.) triggered an increased response of the detected metabolites, including the greatest increase in the metabolite contents in grape cells of both cultivars. No obvious effects in terms of metabolite numbers and contents in grape cells when co-cultured with fungal strains RH7 (Epicoccum sp.) and RH48 (Colletotrichum sp.) were observed. The results of this experiment suggest that endophytic fungi could be used to control the metabolic profiles of grapes and thus increase grape quality

    “You Should Have Seen the Look on Your Face…”: Self-awareness of Facial Expressions

    Get PDF
    The awareness of facial expressions allows one to better understand, predict, and regulate his/her states to adapt to different social situations. The present research investigated individuals’ awareness of their own facial expressions and the influence of the duration and intensity of expressions in two self-reference modalities, a real-time condition and a video-review condition. The participants were instructed to respond as soon as they became aware of any facial movements. The results revealed that awareness rates were 57.79% in the real-time condition and 75.92% in the video-review condition. The awareness rate was influenced by the intensity and (or) the duration. The intensity thresholds for individuals to become aware of their own facial expressions were calculated using logistic regression models. The results of Generalized Estimating Equations (GEE) revealed that video-review awareness was a significant predictor of real-time awareness. These findings extend understandings of human facial expression self-awareness in two modalities
    corecore